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Abstract

Recent generations of frontier language models have introduced Large Reasoning Models
(LRMs) that generate detailed thinking processes before providing answers. While these models
demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scal-
ing properties, and limitations remain insufficiently understood. Current evaluations primarily fo-
cus on established mathematical and coding benchmarks, emphasizing final answer accuracy. How-
ever, this evaluation paradigm often suffers from data contamination and does not provide insights
into the reasoning traces’ structure and quality. In this work, we systematically investigate these
gaps with the help of controllable puzzle environments that allow precise manipulation of composi-
tional complexity while maintaining consistent logical structures. This setup enables the analysis
of not only final answers but also the internal reasoning traces, offering insights into how LRMs
“think”. Through extensive experimentation across diverse puzzles, we show that frontier LRMs
face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counter-
intuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then
declines despite having an adequate token budget. By comparing LRMs with their standard LLM
counterparts under equivalent inference compute, we identify three performance regimes: (1) low-
complexity tasks where standard models surprisingly outperform LRMs, (2) medium-complexity
tasks where additional thinking in LRMs demonstrates advantage, and (3) high-complexity tasks
where both models experience complete collapse. We found that LRMs have limitations in exact
computation: they fail to use explicit algorithms and reason inconsistently across puzzles. We
also investigate the reasoning traces in more depth, studying the patterns of explored solutions
and analyzing the models’ computational behavior, shedding light on their strengths, limitations,
and ultimately raising crucial questions about their true reasoning capabilities.

1 Introduction

Large Language Models (LLMs) have recently evolved to include specialized variants explicitly
designed for reasoning tasks—Large Reasoning Models (LRMs) such as OpenAI’s o1/o3 [1, 2],
DeepSeek-R1 [3], Claude 3.7 Sonnet Thinking [4], and Gemini Thinking [5]. These models are new
artifacts, characterized by their “thinking” mechanisms such as long Chain-of-Thought (CoT) with
self-reflection, and have demonstrated promising results across various reasoning benchmarks. Their
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Figure 1: Top : Our setup enables veri�cation of both �nal answers and intermediate reasoning traces,
allowing detailed analysis of model thinking behavior.Bottom left & middle : At low complexity,
non-thinking models are more accurate and token-e�cient. As complexity increases, reasoning models
outperform but require more tokens�until both collapse beyond a critical threshold, with shorter
traces. Bottom right : For correctly solved cases, Claude 3.7 Thinking tends to �nd answers early
at low complexity and later at higher complexity. In failed cases, it often �xates on an early wrong
answer, wasting the remaining token budget. Both cases reveal ine�ciencies in the reasoning process.

emergence suggests a potential paradigm shift in how LLM systems approach complex reasoning
and problem-solving tasks, with some researchers proposing them as signi�cant steps toward more
general arti�cial intelligence capabilities.
Despite these claims and performance advancements, the fundamental bene�ts and limitations of
LRMs remain insu�ciently understood. Critical questions still persist: Are these models capable
of generalizable reasoning, or are they leveraging di�erent forms of pattern matching [6]? How
does their performance scale with increasing problem complexity? How do they compare to their
non-thinking standard LLM counterparts when provided with the same inference token compute?
Most importantly, what are the inherent limitations of current reasoning approaches, and what
improvements might be necessary to advance toward more robust reasoning capabilities?
We believe the lack of systematic analyses investigating these questions is due to limitations in
current evaluation paradigms. Existing evaluations predominantly focus on established mathematical
and coding benchmarks, which, while valuable, often su�er from data contamination issues and do
not allow for controlled experimental conditions across di�erent settings and complexities. Moreover,
these evaluations do not provide insights into the structure and quality of reasoning traces. To
understand the reasoning behavior of these models more rigorously, we need environments that
enable controlled experimentation.
In this study, we probe the reasoning mechanisms of frontier LRMs through the lens of problem

2



complexity. Rather than standard benchmarks (e.g., math problems), we adopt controllable puzzle en-
vironments that let us vary complexity systematically�by adjusting puzzle elements while preserving
the core logic�and inspect both solutions and internal reasoning (Fig. 1, top). These puzzles: (1) of-
fer �ne-grained control over complexity; (2) avoid contamination common in established benchmarks;
(3) require only the explicitly provided rules, emphasizing algorithmic reasoning; and (4) support
rigorous, simulator-based evaluation, enabling precise solution checks and detailed failure analyses.
Our empirical investigation reveals several key �ndings about current Language Reasoning Models
(LRMs): First, despite their sophisticated self-re�ection mechanisms learned through reinforcement
learning, these models fail to develop generalizable problem-solving capabilities for planning tasks,
with performance collapsing to zero beyond a certain complexity threshold. Second, our comparison
between LRMs and standard LLMs under equivalent inference compute reveals three distinct reason-
ing regimes (Fig. 1, bottom). For simpler, low-compositional problems, standard LLMs demonstrate
greater e�ciency and accuracy. As problem complexity moderately increases, thinking models gain
an advantage. However, when problems reach high complexity with longer compositional depth,
both model types experience complete performance collapse (Fig. 1, bottom left). Notably, near
this collapse point, LRMs begin reducing their reasoning e�ort (measured by inference-time tokens)
as problem complexity increases, despite operating well below generation length limits (Fig. 1,
bottom middle). This suggests a fundamental inference time scaling limitation in LRMs' reasoning
capabilities relative to problem complexity. Finally, our analysis of intermediate reasoning traces or
thoughts reveals complexity-dependent patterns: In simpler problems, reasoning models often identify
correct solutions early but ine�ciently continue exploring incorrect alternatives�an �overthinking�
phenomenon. At moderate complexity, correct solutions emerge only after extensive exploration
of incorrect paths. Beyond a certain complexity threshold, models completely fail to �nd correct
solutions (Fig. 1, bottom right). This indicates LRMs possess limited self-correction capabilities
that, while valuable, reveal fundamental ine�ciencies and clear scaling limitations.
These �ndings highlight both the strengths and limitations of existing LRMs, raising questions
about the nature of reasoning in these systems with important implications for their design and
deployment. Our key contributions are:
ˆ We question the current evaluation paradigm of LRMs on established math benchmarks and

design a controlled experimental testbed by leveraging algorithmic puzzle environments that enable
controllable experimentation with respect to problem complexity.

ˆ We show that state-of-the-art LRMs (e.g., o3-mini, DeepSeek-R1, Claude-3.7-Sonnet-Thinking)
still fail to develop generalizable problem-solving capabilities, with accuracy ultimately collapsing
to zero beyond certain complexities across di�erent environments.

ˆ We �nd that there exists a scaling limit in the LRMs' reasoning e�ort with respect to problem
complexity, evidenced by the counterintuitive decreasing trend in the thinking tokens after a
complexity point.

ˆ We question the current evaluation paradigm based on �nal accuracy and extend our evaluation
to intermediate solutions of thinking traces with the help of deterministic puzzle simulators. Our
analysis reveals that as problem complexity increases, correct solutions systematically emerge at
later positions in thinking compared to incorrect ones, providing quantitative insights into the
self-correction mechanisms within LRMs.

ˆ We uncover surprising limitations in LRMs' ability to perform exact computation, including their
failure to bene�t from explicit algorithms and their inconsistent reasoning across puzzle types.
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2 Related Works
Reasoning in Language Models. Large Language Models (LLMs) undergo multiple costly
training phases using vast amounts of training data. While these LLMs demonstrate promising
language understanding with strong compression capabilities, their intelligence and reasoning abilities
remain a critical topic of scienti�c debate [7, 8]. Earlier iterations of LLMs [ 9, 10, 11] exhibited
poor performance on reasoning benchmarks [12, 13, 14, 6]. To address these shortcomings, several
approaches have been explored with the common theme among them being�scaling� both the training
data and test-time computation. For instance, generating a Chain of Thought (CoT) [15, 16, 17, 18]
and incorporating self-veri�cation [19, 20, 21] prior to the �nal answer have been shown to improve
model performance. However, obtaining high-quality and scalable CoT data is quite expensive
due to its scarcity. Another line of research focuses on compensating for the lack of supervised
data by teaching models to think more e�ectively through supervised learning or reinforcement
learning [22, 23, 24, 25, 26, 27]. A notable open-source example of these improvements is Deepseek-
R1 [3], which demonstrated that applying RL with veri�able rewards can signi�cantly enhance model
performance, matching that of closed models like OpenAI's o1 [2], leading to a new generation of
language models referred to as Large Reasoning Models (LRMs) such as Gemini �ash thinking [5],
Claude 3.7 Sonnet thinking [4], etc.

Understanding Large Reasoning Models. Recent studies have explored various aspects of
reasoning behavior: Large Reasoning Models have shown emergent behaviors such as discrepancy
between thought traces and �nal answers [28, 29] as well as e�ciency concerns through what
researchers term the�overthinking phenomenon� [30, 31, 32, 33], where models produce verbose,
redundant outputs, even after �nding the solution, creating signi�cant inference computational
overhead. In this work, we systematically analyze how much model thinks w.r.t task complexity.
Recently, Ballon et al. [34] demonstrated that in newer LRMs accuracy generally declines when
thinking increases in math problems, in contrast we observe when in controlled puzzle environment
di�culty passes a certain level the model starts to think less and opposite corelation of thinking and
task complexity only happens up to some threshold. Yue et al. [35] questioned whether reinforcement
learning truly elicits novel reasoning patterns and shows pass@k of reasoning vs non-reasoning models
converge to the same point. We also observe that in MATH-500 pass@k is close for reasoning versus
non-reasoning models but we observed di�erent patterns under medium and high complexity of
puzzles, which is not easily observable on established math benchmarks used in common evaluations.

Controllable Evaluation Environments. Unlike earlier studies that focused on mathematical
problems to evaluate the reasoning capabilities of language models, this work introduces controllable
puzzle environments. These environments allow for precise manipulation of problem complexity while
maintaining consistent logical processes, enabling a more rigorous analysis of reasoning patterns and
limitations. Controllable environments are not uncommon in the literature [12, 36, 37]. However,
our primary aim is not to propose a new benchmark; instead, we use these benchmarks as tools
for designing experiments to understand the reasoning capabilities of language models. A closely
related study by Valmeekam et al. [38] demonstrated that o1-models show signi�cant performance
improvements compared to previous models. Our work o�ers additional insights, such as examining
pairs of thinking/non-thinking models (e.g., DeepSeek-R1/V3, Claude 3.7 Sonnet thinking/non-
thinking). Furthermore, we study the reasoning traces of the LRMs in more depth, revealing di�erent
behaviors across various complexity levels.
Overall, the promising results from recent LRMs raise a critical question: how much have the
previously reported limitations of LLMs been improved? In this work, we move beyond merely
measuring the performance of these LRMs. We analyze how well these LRMs tackle problems of
varying complexities and examine the properties of their reasoning processes.
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Figure 2: Comparative analysis of thinking versus non-thinking models across math benchmarks
reveals inconsistent performance patterns. While results on the MATH-500 dataset show comparable
performance between both model types, the thinking models demonstrate superior performance
on AIME24 and AIME25 benchmarks. Additionally, the observed performance degradation from
AIME24 to AIME25 highlights the vulnerability of these benchmarks to data contamination issues.

3 Math and Puzzle Environments

Currently, it is not clear whether the performance enhancements observed in recent RL-based
thinking models are attributable to increased exposure to established mathematical benchmark
data, to the signi�cantly greater inference compute allocated to thinking tokens, or to reasoning
capabilities developed by RL-based training? Recent studies [35, 39] have explored this question
with established math benchmarks by comparing the upper-bound capabilities (pass@k) of RL-based
thinking models with their non-thinking standard LLM counterparts. They have shown that under
equivalent inference token budgets, non-thinking LLMs can eventually reach performance comparable
to thinking models on benchmarks like MATH500 [40] and AIME24 [41]. We also conducted our
comparative analysis of frontier LRMs like Claude-3.7-Sonnet (with vs. without thinking)and
DeepSeek (R1 vs. V3). Our results (shown in Fig. 2) con�rm that, on the MATH500 dataset, the
pass@k performance of thinking models is comparable to their non-thinking counterparts when
provided with the same inference token budget. However, we observed that this performance gap
widens on the AIME24 benchmark and widens further on AIME25. This widening gap presents
an interpretive challenge. It could be attributed to either: (1) increasing complexity requiring
more sophisticated reasoning processes, thus revealing genuine advantages of the thinking models
for more complex problems, or (2) reduced data contamination in newer benchmarks (particularly
AIME25). Interestingly, human performance on AIME25 was actually higher than on AIME24
[42, 43], suggesting that AIME25 might be less complex. Yet models perform worse on AIME25
than AIME24�potentially suggesting data contamination during the training of frontier LRMs.
Given these non-justi�ed observations and the fact that mathematical benchmarks do not allow for
controlled manipulation of problem complexity, we turned to puzzle environments that enable more
precise and systematic experimentation.
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Figure 3: Illustration of the four puzzle environments. Columns show the progression frominitial
state (top) through intermediate state (middle) to target state (bottom) for puzzles: Tower
of Hanoi (disk transfer across pegs), Checkers Jumping (position swapping of colored tokens), River
Crossing (transporting entities across a river), and Blocks World (stack recon�guration).

3.1 Puzzle Environments

We evaluate LRM reasoning on four controllable puzzles spanning compositional depth, planning
complexity, and distributional settings. The puzzles are de�ned below and illustrated in Fig. 3.
Tower of Hanoi is a puzzle featuring three pegs andn disks of di�erent sizes stacked on the �rst
peg in size order (largest at bottom). The goal is to transfer all disks from the �rst peg to the third
peg. Valid moves include moving only one disk at a time, taking only the top disk from a peg, and
never placing a larger disk on top of a smaller one. The di�culty in this task can be controlled by
the number of initial disks as the minimum number of required moves withn initial disks will be
2n � 1. However, in this work we do not grade for optimality of �nal solution and only measuring
the correctness of each move and reaching the target state.
Checker Jumping is a one-dimensional puzzle arranging red checkers, blue checkers, and a single
empty space in a line. The objective is to swap the positions of all red and blue checkers, e�ectively
mirroring the initial con�guration. Valid moves include sliding a checker into an adjacent empty
space or jumping over exactly one checker of the opposite color to land in an empty space. No checker
can move backward in the puzzle process. The complexity of this task can be controlled by the
number of checkers: with2n checkers, the minimum number of moves required will be(n + 1) 2 � 1.
River Crossing is a constraint satisfaction planning puzzle involvingn actors and their corresponding
n agents who must cross a river using a boat. The goal is to transport all2n individuals from the
left bank to the right bank. The boat can carry at most k individuals and cannot travel empty.
Invalid situations arise when an actor is in the presence of another agent without their own agent
present, as each agent must protect their client from competing agents. The complexity of this task
can also be controlled by the number of actor/agent pairs present. Forn = 2 ; n = 3 pairs, we use
boat capacity of k = 2 and for larger number of pairs we usek = 3 .
Blocks World is a block-stacking puzzle requiring rearrangement of blocks from an initial con�gu-
ration into a speci�ed goal con�guration. The objective is to �nd the minimum number of moves
needed for this transformation. Valid moves are restricted to the topmost block of any stack, which
can be placed either on an empty stack or on top of another block. The complexity in this task can
be controlled by the number of blocks present.
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Figure 4: Accuracy of thinking models (Claude 3.7 Sonnet with thinking, DeepSeek-R1) versus their
non-thinking counterparts (Claude 3.7 Sonnet, DeepSeek-V3) across all puzzle environments and
varying levels of problem complexity.

4 Experiments & Results

4.1 Experimental Setup

Most of our experiments are conducted on reasoning models and their non-thinking counterparts,
such as Claude 3.7 Sonnet (thinking/non-thinking) and DeepSeek-R1/V3. We chose these models
because they allow access to the thinking tokens, unlike models such as OpenAI's o-series. For
experiments focused solely on �nal accuracy, we also report results on the o-series models. For Claude
3.7 Sonnet models, we allow the maximum token budget (64k). Similarly, for DeepSeek-R1/V3
models on local servers, we allow the maximum length to be up to64k tokens. For each puzzle
instance, we generate 25 samples and report the average performance of each model across them.
Comprehensive details of our experimental setup and results are provided in the Appendix.

4.2 How Does Complexity A�ect Reasoning?

4.2.1 Three Regimes of Complexity

Motivated by the observations in Fig. 2, to systematically investigate the impact of problem complexity
on reasoning behavior, we conducted experiments comparingthinking and non-thinking model
pairs across our controlled puzzle environments. Our analysis focused on matched pairs of LLMs
with identical model backbones, speci�callyClaude-3.7-Sonnet (w. vs. w/o thinking)and DeepSeek
(R1 vs. V3). In each puzzle, we vary the complexity by manipulating problem sizeN (representing
disk count, checker count, block count, or crossing elements).
Fig. 4 presents the accuracy of both model types as a function of problem complexity across all
puzzle environments. Complementing this, Fig. 5 shows the upper bound performance capabilities
(pass@k) of these model pairs under equivalent inference token compute (averaged across all puzzles),
extending earlier analyses from mathematical benchmarks (Fig. 2) to the controlled puzzle environ-
ments. Results from both these �gures demonstrate that, unlike observations from math, there exists
three regimesin the behavior of these models with respect to complexity. In the �rst regime where
problem complexity is low, we observe that non-thinking models are capable to obtain performance
comparable to, or even better than thinking models with more token-e�cient inference. In the
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Figure 5: Pass@k performance of thinking vs. non-thinking models across equivalent compute
budgets in puzzle environments oflow , medium , and high complexity. Non-thinking models excel
in simple problems, thinking models show advantages at medium complexity, while both approaches
fail at high complexity regardless of compute allocation.

second regimewith medium complexity, the advantage of reasoning models capable of generating
long chain-of-thought begin to manifest, and the performance gap between model pairs increases. The
most interesting regime is the third regime where problem complexity is higher and the performance
of both models have collapsed to zero. Results show that while thinking models delay this collapse,
they also ultimately encounter the same fundamental limitations as their non-thinking counterparts.

4.2.2 Collapse of Reasoning Models

We next examine how di�erent specialized reasoning models equipped with thinking tokens respond
to increasing problem complexity. Our experiments evaluate �ve state-of-the-art thinking models:
o3-mini (medium and high con�gurations), DeepSeek-R1, DeepSeek-R1-Qwen-32B, and Claude-3.7-
Sonnet (thinking). Fig. 6 demonstrates these models' performance in terms of accuracy (top) and
thinking token usage (bottom) across varying complexity levels. Results show that all reasoning
models exhibit a similar pattern with respect to complexity: accuracy progressively declines as
problem complexity increases until reaching complete collapse (zero accuracy) beyond a model-
speci�c complexity threshold. Analysis of inference thinking token compute also reveals an intriguing
pattern in thinking token allocation learned by these models. We observe that reasoning models
initially increase their thinking tokens proportionally with problem complexity. However, upon
approaching a critical threshold�which closely corresponds to their accuracy collapse point�models
counterintuitively begin to reduce their reasoning e�ort despite increasing problem di�culty. This
phenomenon is most pronounced in o3-mini variants and less severe in the Claude-3.7-Sonnet
(thinking) model. Notably, despite operating well below their generation length limits with ample
inference budget available, these models fail to take advantage of additional inference compute during
the thinking phase as problems become more complex. This behavior suggests a fundamental scaling
limitation in the thinking capabilities of current reasoning models relative to problem complexity.
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Figure 6: Accuracy and thinking tokens vs. problem complexity for reasoning models across puzzle
environments. As complexity increases, reasoning models initially spend more tokens while accuracy
declines gradually, until a critical point where reasoning collapses�performance drops sharply and
reasoning e�ort decreases.

4.3 What Happens Inside the Thoughts of Reasoning Models?

To gain deeper insights into the thinking processes of reasoning models, we conducted a �ne-grained
analysis of their reasoning traces. As shown in Fig. 1, our setup with puzzle environments allows us
to look beyond �nal answer and obtain more detailed insight into the reasoning traces (�thoughts�)
produced by these models. We extract and analyze the intermediate solutions exploredwithin the
thoughts of a model with the help of puzzle simulators. Our investigation examines the patterns and
characteristics of these intermediate solutions, their correctness relative to their sequential position
in the reasoning process, and how these patterns evolve with increasing problem complexity. For
this analysis, we focus on the reasoning traces generated byClaude-3.7-Sonnet-Thinkingacross
our puzzle suite. For each intermediate solution identi�ed within the traces, we recorded: (1) its
relative position within the reasoning trace (normalized by total thought length), (2) its correctness
as validated by our puzzle simulators, and (3) the complexity of the corresponding problem. This
allows to characterize the progression and accuracy of solution development throughout the reasoning
process.
Fig. 7a demonstrates the relation between the position of intermediate solutions within thoughts, their
correctness, and problem complexity across all puzzle environments. Our analysis from reasoning
traces also further validates three regimes of complexity discussed above. For simpler problems,
reasoning models often �nd the correct solution early in their thinking but then continue exploring
incorrect solutions. Note the distribution of incorrect solutions (red) is shifted more upward towards
end of thinking compared to correct solutions (green). This phenomenon, referred to as �overthinking�
in the literature, leads to the waste of compute. As problems become moderately more complex,
this trend reverses: models �rst explore incorrect solutions and mostly later in thought arrive at
the correct ones. This time the distribution of incorrect solutions (red) is shifted more downward
compared to correct ones (green). Finally, for the problems with higher complexity, collapse emerges,
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